dtxrd

x-ray diffraction calculator (dynamical theory of x-ray diffraction)

author:Stanislav Stoupin
email:<sstoupin@gmail.com>

SYNOPSIS

dtxrd [options] crystal h k l eta phi T d ["a" | "e"] [theta | Ex]

DESCRIPTION

Calculates parameters of a given crystal reflection for a monochromatic incident wave using dynamical theory of x-ray diffraction for perfect crystals in the 2-beam approximation

For a brief summary run:

dtxrd -h

INPUT PARAMETERS

crystal:

available crystal models: C (diamond), Si (silicon), Ge (germanium), GaN (wurtzite), SiC-4H, SiC-6H, SiO2 (quartz), Al2O3 (sapphire)

h k l:

Miller indicies of a chosen reflection

eta:

asymmetry angle (\(\eta\) [degrees])

phi:

azimuthal angle of incidence (\(\phi\) [degrees])

T:

crystal temperature [K]

d:

crystal thickness [mm]

flag:
flag description
a perform calculation at a given glancing angle of incidence theta
e perform calculation at a given photon energy Ex
theta:

glancing angle of incidence, theta (\(\theta\))

Ex:

photon energy, Ex (\(E_{\mathrm X}\))

OPTIONS

-v, --version:
 show program version
-h, --help:
 show summary of options.
-o FILENAME, --output FILENAME:
 write results to file (default to stdout)
-w FILENAME, --write FILENAME:
 write data to file (default: no action)
-p, --pi:\(\pi\) polarization for the incident wave (default: \(\sigma\) polarization)
-c CONST, --conv CONST:
 convolve the reflectivity curve with a virtual instrument resolution function with FWHM = CONST [urad], plot the result and and report the resulting width of the convoluted curve
-s CONST, --syield CONST:
 calculate shape of the secondary yield curve (e.g., photoelectrons) with escape depth CONST [Angstrom]
-z STRING, --zblock STRING:
 calculate reflectivity/transmissivity curves for a mosaic crystal (uncorrelated block model) with STRING = 't s', where t is the block thickness [um] and s is the standard deviation of misorientation [urad] (assuming Gaussian distribution)
-n CONST, --nsteps CONST:
 CONST - number of points in the angular/energy interval (default: 1000)

OUTPUT PARAMETERS

Basic parameters of the chosen h k l reflection:

d[A]:\(d\) [Angstrom] interplanar distance (d-spacing) of the chosen h k l reflection
Eb[keV]:\(E_B = \frac{hc}{2d}\) [keV] Bragg energy
thr[deg]:\(\theta_R\) [degrees] incident glancing angle for the exact backscattering (a wave with photon energy \(E_R\) incident at this angle is reflected exactly backwards)
Er[keV]:\(E_R\) [keV] photon energy for the exact backscattering
bh:\(b_{H}\) asymmetry factor in the chosen scattering geometry for symmetric reflection \(\eta = 0\) and \(b_{H} = - 1\)

Susceptibilities and refraction corrections:

chi_{0}:\(\chi_0\) susceptibility
chi_{h}:\(\chi_{H}\) susceptibility
chi_{-h}:\(\chi_{\bar{H}}\) susceptibility
wh(s):\(\omega_{H}^s\) refraction correction for symmetric reflection
wh:\(\omega_{H} = \omega_{H}^s \frac{b_{H}-1}{2b_{H}}\) refraction correction for the chosen reflectoin

Central energy and angle:

Ec[keV]:\(E_c\) [keV] central energy of the chosen reflection
thc[deg]:\(\theta_c\) [deg] central glancing angle of incidence of the chosen reflection

Energy intrinsic (Darwin) widths (thick non-absorbing crystal) at fixed glancing angle of incidence \(\theta_c\):

eps_s:\(\varepsilon^s\) relative energy width of symmetric h k l reflection (same for entrance and exit)
eps:\(\varepsilon\) relative entrance energy width of the chosen h k l reflection
eps_pr:\(\varepsilon'\) relative exit energy width of the chosen h k l reflection
Delta_E_s[meV]:\(\Delta E^s\) [meV] absolute energy width of symmetric h k l reflection (same for entrance and exit)
Delta_E[meV]:\(\Delta E\) [meV] absolute entrance energy width of the chosen h k l reflection
DeltaE_pr[meV]:\(\Delta E'\) [meV] absolute exit energy width of symmetric reflection

Angular intrinsic (Darwin) widths (thick non-absorbing crystal) at fixed photon energy \(E_c\):

dth_s[urad]:\(\Delta \theta^s\) [microradian] angular width of the symmetric h k l reflection (same for entrance and exit)
dth[urad]:\(\Delta \theta\) [microradian] angular entrance width of the chosen h k l reflection
dth_pr[urad]:\(\Delta \theta'\) [microradian] angular exit width of the chosen h k l reflection

Additional characteristics of the chosen h k l reflection:

dE/dth[meV/urad]:
 \(\frac{dE}{d\theta}\) [meV/microradian] tangent of the Bragg's Law
Dr[urad/meV]:\(D_r\) [microradian/meV] intrinsic angular dispersion rate of the chosen h k l reflection
de[um]:\(d_e\) [micrometer] extinction length of the chosen h k l reflection

Reflectivity and Transmissivity:

Rc[%]:\(R_c\) [%] reflectivity at center
Tc[%]:\(T_c\) [%] transmissivity at center

EXAMPLES

A rocking curve of the symmetric Si 111 reflection (Bragg case, 1-mm-thick crystal at 300 K)

dtxrd Si 1 1 1 0 0 300 1 e 8
Si111 at 8keV

A rocking curve of the symmetric diamond 220 reflection (Laue case, 0.1-mm-thick crystal plate at 300 K)

dtxrd C 2 2 0 90 0 300 0.1 e 12
C220 Laue at 12keV

Reflectivity curve of the diamond 008 reflection in exact backscattering (0.5-mm-thick crystal plate at 300 K). Accurate sampling of the thickness oscillations is achieved using 10000 points.

dtxrd -n 10000 C 0 0 8 0 0 300 0.5 a 90
C008 in backscattering

Rocking curve of the diamond 220 reflection (0.5-mm-thick crystal plate at 300 K at 20 keV). Reflectivity/transmissivity of a perfect crystal compared with those of the mosaic crystal with 10 um block size having misorientation of 20 microradian r.m.s. (uncorrelated block model)

dtxrd -n 10000 -z '10 20' C 2 2 0 90 0 300 0.5 e 20
C220 mosaic

Note: reflectivity for a mosaic crystal in backscattering has not been implemented yet

SEE ALSO

author:Stanislav Stoupin
email:<sstoupin@gmail.com>
date:Jun 12, 2020